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The special case of independence

A key concept in probability and statistics is that of the inde-
pendence of two events in which we are interested. Two events
are said to be “independent” when one of them does not have
any apparent relationship to the other. If I flip a coin that I
know from other evidence is a fair coin, and I get a head, the
chance of then getting another head is still 50-50 (one in two,
or one fo one.) And, if I flip a coin ten times and get heads the
first nine times, the probability of getting a head on the tenth
flip is still 50-50. Hence the concept of independence is char-
acterized by the phrase “The coin has no memory.” (Actually
the matter is a bit more complicated. If you had previously
flipped the coin many times and knew it to be a fair coin, then
the odds would still be 50-50, even after nine heads. But, if
you had never seen the coin before, the run of nine heads might
reasonably make you doubt that the coin was a fair one.)

In the Skins example above, we needed a different set of urns
to estimate the probability of a nice day plus a win, and of a
nasty day plus a win. But what if the Skins’ chances of win-
ning are the same whether the day is nice or nasty? If so, we
say that the chance of winning is independent of the kind of
day. That is, in this special case, P(win|nice day) =
P(win]nasty day) and P(nice day and win) = P(nice day) *
P(winning | nice day) = P(nice day) * P(winning)

Note: See chapter 4’s section on conditional and unconditional
probabilities for an explanation of this notation.
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In this case we need only one set of two urns to make all the
estimates.

Independence means that the elements are drawn from 2 or
more separate sets of possibilities. That is, P(A|B) = P(A|"B) =
P(A) and vice versa.

In other words, if the occurrence of the first event does not
change this probability that the second event will occur, then
the events are independent.

Another way to put the matter: Events A and B are said to be
independent of each other if knowing whether A occurs does
not change the probability that B will occur, and vice versa. If
knowing whether A does occur alters the probability of B oc-
curring, then A and B are dependent.

If two events are independent, the multiplication rule simpli-
fies to p(A and B) = p(A) * p(B). I'll repeat once more: This
rule is simply a mathematical shortcut, and one can make the
desired estimate by simulation.

Also again, if two events are not independent—that is, if
P(A IB) is not equal to P(A) because P(A) is dependent upon
the occurrence of B, then the formula to be used now is, p(A
and B) = p(A|B) * p(B), which is sufficiently confusing that
you are probably better off with a simulation.

What about if each of the probabilities is dependent on the
other outcome? There is no easy formulaic method to deal with
such a situation.

People commonly make the mistake of treating independent
events as non-independent, perhaps from superstitious belief.
After along run of blacks, roulette gamblers say that the wheel
is “due” to come up red. And sportswriters make a living out
of interpreting various sequences of athletic events that occur
by chance, and they talk of teams that are “due” to win be-
cause of the “Law of Averages.” For example, if Barry Bonds
goes to bat four times without a hit, all of us (including trained
statisticians who really know better) feel that he is “due” to
get a hit and that the probability of his doing so is very high—
higher that is, than his season’s average. The so-called “Law
of Averages” implies no such thing, of course.

Events are often dependent in subtle ways. A boy may tele-
phone one of several girls chosen at random. But, if he calls
the same girl again (or if he does not call her again), the second
event is not likely to be independent of the first. And the prob-
ability of his calling her is different after he has gone out with
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her once than before he went out with her.

As noted in the section above, events A and B are said to be
independent of each other if the conditional probabilities of A
and B remain the same. And the conditional probabilities remain
the same if sampling is conducted with replacement.

Let’s now re-consider the multiplication rule with the special
but important case of independence.

Example 5-1: Four Events in a Row—The Multiplication Rule

Assume that we want to know the probability of four success-
ful archery shots in a row, where the probability of a success
on a given shot is .25.

Instead of simulating the process with resampling trials we
can, if we wish, arrive at the answer with the “multiplication
rule.” This rule says that the probability that all of a given num-
ber of independent events (the successful shots) will occur (four
out of four in this case) is the product of their individual prob-
abilities—in this case, 1/4x1/4x1/4x1/4=1/256.If in doubt
about whether the multiplication rule holds in any given case,
however, you may check by resampling simulation. For the
case of four daughters in a row, assuming that the probability
of a girl is .5, the probability is 1/2x1/2x1/2x1/2=1/16.

Better yet, we’d use the more exact probability of getting a
girl: 100/206, and multiply (100/206)*. An important point
here, however: We have estimated the probability of a par-
ticular family having four daughters as 1 in 16—that is, odds
of 15 to 1. But note well: This is a very different idea from stat-
ing that the odds are 15 to 1 against some family’s having four
daughters in a row. In fact, as many families will have four
girls in a row as will have boy-girl-boy-girl in that order or
girl-boy-girl-boy or any other series of four children. The chances
against any particular series is the same—1 in 16—and
one-sixteenth of all four-children families will have each of
these series, on average. This means that if your next-door
neighbor has four daughters, you cannot say how much “out
of the ordinary” the event is. It is easy to slip into unsound
thinking about this matter.

Why do we multiply the probabilities of the independent
simple events to learn the probability that they will occur
jointly (the composite event)? Let us consider this in the con-
text of three basketball shots each with 1/3 probability of hit-
ting.
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Figure 5-1is a tree diagram showing a set of sequential simple
events where each event is conditional upon a prior simple
event. Hence every probability after the first is a conditional
probability.

Success = 1/3x1/3x1/3 = 1/27

Figure 5-1: Tree Diagram for 3 Basketball Shots,
Probability of a Hit is 1/3

In Figure 5-1, follow the top path first. On approximately
one-third of the occasions, the first shot will hit. Among that
third of the first shots, roughly a third will again hit on the sec-
ond shot, thatis, 1/30f1/3 or 1/3 x1/3 =1/9. The top path
makes it clear thatin1/3 x1/3 =1/9 of the trials, two hits in a
row will occur. Then, of the 1/9 of the total trials in which two
hits in a row occur, about 1/3 will go on to a third hit, or 1/3 x
1/3 x 1/3 = 1/27. Remember that we are dealing here with
independent events; regardless of whether the player made
his first two shots, the probability is still 1 in 3 on the third
shot.
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The addition of probabilities

Back to the Washington Redskins again. You ponder more
deeply the possibility of a nasty day, and you estimate with
more discrimination that the probability of snow is .1 and of
rain it is .2 (with .7 of a nice day). Now you wonder: What is
the probability of a rainy day or a nice day?

To find this probability by simulation:

1. Put 7 blue balls (nice day), 1 black ball (snowy day) and 2
gray balls (rainy day) into an urn. You want to know the prob-
ability of a blue or a gray ball. To find this probability:

2. Draw one ball and record “yes” if its color is blue or gray,
“no” otherwise.

3. Repeat step 1 perhaps 200 times.
4. Find the proportion of “yes” trials.

This procedure certainly will do the job. And simulation may
be unavoidable when the situation gets more complex. But in
this simple case, you are likely to see that you can compute
the probability by adding the .7 probability of a nice day and
the .2 probability of a rainy day to get the desired probability.
This procedure of formulaic deductive probability theory is
called the addition rule.

The addition rule

The addition rule applies to mutually exclusive outcomes—that
is, the case where if one outcome occurs, the other(s) cannot
occur; one event implies the absence of the other when events
are mutually exclusive. Green and red coats are mutually ex-
clusive if you never wear more than one coat at a time. If there
are only two possible mutually-exclusive outcomes, the out-
comes are complementary. It may be helpful to note that mu-
tual exclusivity equals total dependence; if one outcome oc-
curs, the other cannot. Hence we write formally that

Ifp(AandB) =0
P(AorB) =P(A) + P((B)

An outcome and its absence are mutually exclusive, and add
to unity.

P(A) + P("A) = 1.
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Examples include a) rain and no rain, and b) if P(sales > $1mil)
= .2, P(sales =< $1mil) = .8.

As with the multiplication rule, the addition rule can be a use-
ful shortcut. The answer can always be obtained by simula-
tion, too.

We have so far implicitly assumed that a rainy day and a snowy
day are mutually exclusive. But that need not be so; both rain
and snow can occur on the same day; if we take this possibil-
ity into account, we cannot then use the addition rule.

Consider the case in which seven days in ten are nice, one day
is rainy, one day is snowy, and one day is both rainy and snowy.
What is the chance that it will be either nice or snowy? The
procedure is just as before, except that some rainy days are
included because they are also snowy.

When A and B are not mutually exclusive—when it is possible
that the day might be both rainy and snowy, or you might wear
both red and green coats on the same day, we write (in the
latter case) P(red and green coats) >0, and the appropriate for-
mula is

P(red or green) = P(red) + p(green)—P(red and green)

In this case as in much of probability theory, the simulation
for the case in which the events are not mutually exclusive is
no more complex than when they are mutually exclusive; in-
deed, if you simulate you never even need to know the con-
cept of mutual exclusivity or inquire whether that is your situ-
ation. In contrast, the appropriate formula for non-exclusivity
is more complex, and if one uses formulas one must inquire
into the characteristics of the situation and decide which for-
mula to apply depending upon the classification; if you clas-
sify wrongly and therefore apply the wrong formula, the re-
sult is a wrong answer.

To repeat, the addition rule only works when the probabilities
you are adding are mutually exclusive—that is, when the two
cannot occur together.

The multiplication and addition rules are as different from each
other as mortar and bricks; both, however, are needed to build
walls. The multiplication rule pertains to a single outcome com-
posed of two or more elements (e.g. weather, and win-or-lose),
whereas the addition rule pertains to two or more possible
outcomes for one element. Drawing from a card deck (with
replacement) provides an analogy: the addition rule is like one
draw with two or more possible cards of interest, whereas the
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multiplication rule is like two or more cards being drawn with
one particular “hand” being of interest.

Theoretical devices for the study of probability

It may help you to understand the simulation approach to es-
timating composite probabilities demonstrated in this book if
you also understand the deductive formulaic approach. So
we'll say a bit about it here.

The most fundamental concept in theoretical probability is the
list of events that may occur, together with the probability of
each one (often arranged so as to be equal probabilities). This
is the concept that Galileo employed in his great fundamental
work in theoretical probability about four hundred years ago
when a gambler asked Galileo about the chances of getting a
nine rather than a ten in a game of three dice (though others
such as Cardano had tackled the subject earlier).!

Galileo wrote down all the possibilities in a tree form, a re-
finement for mapping out the sample space.

Galileo simply displayed the events themselves—such as “2,”
“4,” and “4,” making up a total of 10, a specific event arrived
at in a specific way. Several different events can lead to a 10
with three dice. If we now consider each of these events, we
arrive at the concept of the ways that a total of 10 can arise. We
ask the number of ways that an outcome can and cannot oc-

! Here is another example of the confusion on such matters, this one writ-
ten by Charles Cotton (part-author of The Complete Angler) in 1674: Now
six and eight one would think should admit of no difference in advantage
with seven, but if you will rightly consider the case, and be so vain to make
trial thereof, you will find a great advantage in seven over six and eight.
How can that be you will say, hath not six, seven and eight equal chances?
For example, in six, quarter deuce and two treys; in eight, six deuce, cinque
trey, and two quarters; and hath not seven three as aforesaid? It is confest;
but pray consider the disadvantage in the doublets, two treys and two quar-
ters, and you will find that six deuce is sooner thrown than two quarters,
and so consequently, cinque Ace or quitter deuce sooner than two treys: I
saw an old rook once take up a young fellow in a tavern, upon this very
score: the bargain was made that the rook should have seven always and
the young gentleman six, and throw continually; agreed to play they went,
the rook got the first day ten pound, the next day teh like sum; and so for
six days together losing in all threescore pounds; notwithstanding the
gentleman, I am confident, had square dice, and threw them always him-
self. (cited in Bulmer 1979, p. 20) Bulmer, M.G., Principles of Statistics (New
York: Dover Publications, Inc., 1979).
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cur. (See the paragraph above). This is equivalent both opera-
tionally and linguistically to the paths in (say) the quincunx
device or Pascal’s Triangle which we shall discuss shortly.

A tree is the most basic display of the paths in a given situa-
tion. Each branch of the tree—a unique path from the start on
the left-hand side to the endpoint on the right-hand side—con-
tains the sequence of all the elements that make up that event, in
the order in which they occur. The right-hand ends of the
branches constitute a list of the outcomes. That list includes
all possible permutations—that is, it distinguishes among out-
comes by the orders in which the particular die outcomes oc-
cur.

The Concept of Sample Space

The formulaic approach begins with the idea of sample space,
which is the set of all possible outcomes of the “experiment”
or other situation that interests us. Here is a formal definition
from Goldberg (1960/1986, p. 46):

A sample space S associated with a real or conceptual experi-
ment is a set such that (1) each element of S denotes an out-
come of the experiment, and (2) any performance of the ex-
periment results in an outcome that corresponds to one and
only one element of S.

Because the sum of the probabilities for all the possible out-
comes in a given experimental trial is unity, the sum of all the
events in the sample space (S) = 1.

Early on, people came up with the idea of estimating prob-
abilities by arraying the possibilities for, and those against, the
event occurring. For example, the coin could fall in three
ways—head, tail, or on its side. They then speedily added the
qualification that the possibilities in the list must have an equal
chance, to distinguish the coin falling on its side from the other
possibilities (so ignore it). Or, if it is impossible to make the
probabilities equal, make special allowance for inequality.
Working directly with the sample space is the method of first
principles. The idea of a list was refined to the idea of sample
space, and “for” and “against” were refined to the “success”
and “failure” elements among the total elements.

The concept of sample space raises again the issue of how to
estimate the simple probabilities. While we usually can esti-
mate the probabilities accurately in gambling games because
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we ourselves construct the games and therefore control the
probabilities that they produce, we have much less knowledge
of the structures that underlie the important problems in life—
in science, business, the stock market, medicine, sports, and
so on. We therefore must wrestle with the issue of what prob-
abilities we should include in our theoretical sample space, or
in our experiments. Often we proceed by choosing as an anal-
ogy a physical “model” whose properties we know and which
we consider to be appropriate—such as a gambling game with
coins, dice, cards. This model becomes our idealized setup.
But this step makes crystal-clear that judgment is heavily in-
volved in the process, because choosing the analogy requires
judgment.

A Venn diagram is another device for displaying the elements
that make up an event. But unlike a tree diagram, it does not
show the sequence of those elements; rather, it shows the ex-
tent of overlap among various classes of elements.

A Venn diagram expresses by areas (especially rectangular Venn
diagrams) the numbers at the end of the branches in a tree.

Pascal’s Triangle is still another device. It aggregates the last
permutation branches in the tree into combinations—that is,
without distinguishing by order. It shows analytically (by trac-
ing them) the various paths that lead to various combinations.

The study of the mathematics of probability is the study of
calculational shortcuts to do what tree diagrams do. If you
don’t care about the shortcuts, then you don’t need the for-
mal mathematics--though it may improve your mathematical
insight (or it may not). The resampling method dispenses not
only with the shortcuts but also with the entire counting of
points in the sample space.
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Endnotes

1. The material in this chapter is largely drawn from Simon
(1969; 3rd edition with Paul Burstein, 1985).

2. A given probability may be expressed in terms of probabil-
ity, odds, or chances, and I shall use all three terms to help
familiarize you with them. If the chances are 1 in 10, the odds
are 9 to 1, and the probability is .1. If the odds are 2 to 5, the
chances are 5 in 7, and the probability is 5/7. If the odds are 99
to 1, the chances are 1 in 100, and the probability is .01. If the
odds are 100 to 1, the chances are 1 in 101, and the probability
is 1/101. “Likelihood” is a term related to “probability” but is
not a complete synonym for it.

3. T hope you are not offended by the references to gambling
games in the discussion of statistics in this and other chapters.
Not only was the theory of probability invented to answer
questions about gambling games, but gambling games still
provide useful examples.

4. At one time, some writers believed there was a difference
between “objectively sharply defined” and “objectively vague”
probabilities. Raiffa gives a clear example of why this is not
so:

Suppose you are confronted with two options. In op-
tion 1, you must toss coin 1 (which is fair and true),
guess heads or tails, and win $1.00 if you match and
lose $1.00 if you fail to match. In option 2, you have a
50-50 chance of getting coin 2, which has two heads, or
of getting coin 3, which has two tails. Not knowing
whether you are tossing coin 2 or 3, you must call, toss,
and get the payoffs as in option 1. With option 1, the
probability of the toss coming out heads is .5; with op-
tion 2, the same probability is either 0 or 1, and since
the chance of each in turn is .5, the probability of heads
is ultimately .5 once again. Nothing is to be gained by
saying that one-one-one .5 is sharply defined and that
the other is fuzzy. Of course, if, and this is a big “if,”
you could experiment with the coin you will toss be-
fore you are obliged to declare, then the two options
are manifestly asymmetrical. Barring this privilege, the
two options are equivalent (Raiffa, 1968, p. 108).

5. “Universe” and “population” are perfect synonyms in sci-
entific research. I choose to use “universe” because it seems to
have fewer confusing associations.
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Afternote: Useful hints about simple numbers

A useful piece of shortcut knowledge: You can test whether
two numbers are equal by subtracting one from the other; if
they are equal, the result is zero.

Another useful device: You can check whether two units are
paired by giving one a minus and one a plus for the same num-
ber, and then adding them; if the pair appear together, the sum
is zero.
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