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Variability and Small Samples
Regression to the Mean
Summary and Conclusion

On Variability in
Sampling

Does the headnote above convince you that Japanese cars are
better than American? Has Debra got enough evidence to reach
the conclusion she now holds? That sort of question, and the
reasoning we use to address it , is the subject of this chapter.

More generally, how should one go about using the available
data to test the hypothesis that Japanese cars are better? That
is an example of the questions that are the subject of statistics.

[Debra said]: “I’ve had such good luck with Japanese cars and
poor luck with American...”

The ’65 Ford Mustang: “It was fun, but I had to put two new
transmissions in it.”

The Ford Torino: “That got two transmissions too. That
finished me with Ford.”

The Plymouth Horizon: “The disaster of all disasters. That
should’ve been painted bright yellow. What a lemon.”

(Washington Post Magazine, May 17, 1992, p. 19)

Variability and small samples

Perhaps the most important idea for sound statistical infer-
ence—the section of the book we are now beginning, in con-
trast to problems in probability, which we have studied in the
previous chapters—is recognition of the presence of variability
in the results of small samples. The fatal error of relying on
too-small samples is all too common among economic fore-
casters, journalists, and others who deal with trends and pub-
lic opinion. Athletes, sports coaches, sportswriters, and fans
too frequently disregard this principle both in their decisions
and in their discussion.

CHAPTER

9
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Our intuitions often carry us far astray when the results vary
from situation to situation—that is, when there is variability
in outcomes—and when we have only a small sample of out-
comes to look at.

To motivate the discussion, I’ll tell you something that almost
no American sports fan will believe: There is no such thing as
a slump in baseball batting. That is, a batter often goes an
alarming number of at-bats without getting a hit, and every-
one—the manager, the sportswriters, and the batter himself—
assumes that something has changed, and the probability of
the batter getting a hit is now lower than it was before the
slump. It is common for the manager to replace the player for
a while, and for the player and coaches to change the player’s
hitting style so as to remedy the defect. But the chance of a
given batter getting a hit is just the same after he has gone
many at-bats without a hit as when he has been hitting well.
A belief in slumps causes managers to play line-ups which may
not be their best.

By “slump” I mean that a player’s probability of getting a hit
in a given at-bat is lower during a period than during average
periods. And when I say there is no such thing as a slump, I
mean that the chances of getting a hit after any sequence of
at-bats without a hit is not different than the long-run aver-
age.

The “hot hand” in basketball is another illusion. The hot hand
does not exist! The chance of a shooter scoring is the same af-
ter he has just missed a flock of shots as when he has just sunk
a long string. That is, the chance of scoring a basket is no higher
after a run of successes than after a run of failures. But even
professional teams choose plays on the basis of who suppos-
edly has a hot hand.

Managers who substitute for the “slumping” or “cold-handed”
players with other players who, in the long run, have lower
batting averages, or set up plays for the shooter who suppos-
edly has a hot hand, make a mistake. The supposed hot hand
in basketball, and the slump in baseball, are illusions because
the observed long runs of outs, or of baskets, are statistical
artifacts, due to ordinary random variability. The identifica-
tion of slumps and hot hands is superstitious behavior, classic
cases of the assignment of pattern to a series of events when
there really is no pattern.

How do statisticians ascertain that slumps and hot hands do
not exist? In brief, in baseball we simulate a hitter with a given
average—say .250—and compare the results with actual hit-
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ters of that average, to see whether they have “slumps” longer
than the computer. The method of investigation is roughly as
follows. You program a computer or other machine to behave
the way a player would, given the player’s long-run average,
on the assumption that each trial is a random drawing. For
example, if a player has a .250 season-long batting average,
the machine is programmed like an urn containing three black
balls and one white ball. Then for each simulated at bat, the
machine shuffles the “balls” and draws one; it then records
whether the result is black or white, after which the ball is re-
placed in the urn. To study a season with four hundred at-bats,
a simulated ball is drawn four hundred times.

The records of the player’s real season and the simulated sea-
son are then compared. If there really is such a thing as a
non-random slump or streak, there will be fewer but longer
“runs” of hits or outs in the real record than in the simulated
record. On the other hand, if performance is independent from
at-bat trial to at-bat trial, the actual record will change from
hit to out and from out to hit as often as does the random simu-
lated record. I suggested this sort of test for the existence of
slumps in my 1969 book that first set forth the resampling
method, a predecessor of this book.

For example, Table 9-1 shows the results of one 400 at-bat sea-
son for a simulated .250 hitter. (1 = hit, 0 = out, sequential at-
bats ordered vertically) Note the “slump”—1 for 24—in col-
umns 7 & 8 (in bold).
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Harry Roberts investigated the batting records of a sample of
major leaguers. He compared players’ season-long records
against the behavior of random-number drawings. If slumps
existed rather than being a fiction of the imagination, the real
players’ records would shift from a string of hits to a string of
outs less frequently than would the random-number se-
quences. But in fact the number of shifts, and the average
lengths of strings of hits and outs, are on average the same for
players as for player-simulating random-number devices.

Over long periods, averages may vary systematically, as Ty
Cobb’s annual batting averages varied non-randomly from
season to season, Roberts found. But in the short run, most
individual and team performances have shown results simi-
lar to the outcomes that a lottery-type random number ma-
chine would produce.

Thomas Gilovich, Robert Vallone and Amos Twersky per-
formed a similar study of basketball shooting. They examined
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Table 9-1
A Rookie Season (400 at-bats)



144 Resampling: The New Statistics

the records of shots from the floor by the Philadelphia 76’ers,
foul shots by the Boston Celtics, and a shooting experiment of
Cornell University teams. They found that “basketball play-
ers and fans alike tend to believe that a player’s chance of hit-
ting a shot are greater following a hit than following a miss on
the previous shot. However, detailed analyses…provided no
evidence for a positive correlation between the outcomes of
successive shots.”

To put their conclusion differently, knowing whether a shooter
has scored or not scored on the previous shot—or in any pre-
vious sequence of shots—is of absolutely no use in predicting
whether the shooter will or will not score on the next shot.
Similarly, knowledge of the past series of at-bats in baseball
does not improve a prediction of whether a batter will get a
hit this time.

Of course a batter feels—and intensely—as if she or he has a
better chance of getting a hit at some times than at other times.
After a series of successful at-bats, both sandlot players and
professionals feel confident that this time will be a hit, too. And
after you have hit a bunch of baskets from all over the court,
you feel as if you can’t miss.

But notice that cardplayers get the same poignant feeling of
being “hot” or “cold,” too. After a poker player “fills” several
straights and flushes in a row, s/he feels s/he will hit the next
one too. (Of course there are some players who feel just the
opposite, that the “law of averages” is about to catch up with
them.)

You will agree, I’m sure, that the cards don’t have any memory,
and a player’s chance of filling a straight or flush remains the
same no matter how he or she has done in the last series of
hands. Clearly, then, a person can have a strong feeling that
something is about to happen even when that feeling has no
foundation. This supports the idea that even though a player
in sports “feels” that s/he is in a slump or has a hot hand, this
does not imply that the feeling has any basis in reality.

Why, when a batter is low in his/her mind because s/he has
been making a lot of outs or for personal reasons, does her/
his batting not suffer? And why the opposite? Apparently at
any given moment there are many influences operating upon
a player’s performance in a variety of directions, with none of
them clearly dominant. Hence there is no simple convincing
explanation why a player gets a hit or an out, a basket or a
miss, on any given attempt.
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But though science cannot provide an explanation, the sports
commentators always are ready to offer their analyses. Listen,
for example, to how they tell you that Joe Zilch must have been
trying extra hard just because of his slump. There is a
sportswriter’s explanation for anything that happens.

Why do we believe the nonsense we hear about “momentum,”
“comeback,” “she’s due this time,” and so on? The adult of
the human species has a powerful propensity to believe that
he or she can find a pattern even when there is no pattern to
be found. Two decades ago I cooked up series of numbers with
a random-number machine that looked as if they were prices
on the stock market. Subjects in the experiment were told to
buy and sell whichever stocks they chose. Then I gave them
“another day’s prices,” and asked them to buy and sell again.
The subjects did all kinds of fancy figuring, using an incred-
ible variety of assumptions—even though there was no way
for the figuring to help them. That is, people sought patterns
even though there was no reason to believe that there were
any patterns to be found.

When I stopped the game before the ten buy-and-sell sessions
the participants expected, people asked that the game continue.
Then I would tell them that there was no basis for any pat-
terns in the data. “Winning” or “losing” had no meaning. But
the subjects demanded to continue anyway. They continued
believing that they could find patterns even after I told them
that the numbers were randomly looked up and not real stock
prices.

The illusions in our thinking about sports have important
counterparts in our thinking about such real-world phenom-
ena as the climate, the stock market, and trends in the prices
of raw materials such as mercury, copper and wheat. And pri-
vate and public decisions made on the basis of faulty under-
standing of these real situations, caused by illusory thinking
on the order of belief in slumps and hot hands, are often costly
and sometimes disastrous.

An example of the belief that there are patterns when there
are none: Systems for finding patterns in the stock market are
peddled that have about the same reliability as advice from a
racetrack tout—and millions buy them.

One of the scientific strands leading into research on variabil-
ity was the body of studies that considers the behavior of stock
prices as a “random walk.” That body of work asserts that a
stock broker or chartist who claims to be able to find patterns
in past price movements of stocks that will predict future
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movements should be listened to with about the same credu-
lity as a racetrack tout or an astrologer. A second strand was
the work in psychology in the last decade or two which has
recognized that people’s estimates of uncertain events are sys-
tematically biased in a variety of interesting and knowable
ways.

The U.S. government has made—and continues to make—
blunders costing the public scores of billions of dollars, using
slump-type fallacious reasoning about resources and energy.
Forecasts are issued and policies are adopted based on the be-
lief that a short-term increase in price constitutes a long-term
trend. But the “experts” employed by the government to make
such forecasts do no better on average than do private fore-
casters, and often the system of forecasting that they use is
much more misleading than would be a random-number gen-
erating machine of the sort used in the baseball slump experi-
ments.

Please look at the data in Figure 9-2 for the height of the Nile
River over about half a century. Is it not natural to think that
those data show a decline in the height of the river? One can
imagine that if our modern communication technology existed
then, the Cairo newspapers would have been calling for re-
search to be done on the fall of the Nile, and the television
anchors would have been warning the people to change their
ways and use less water.

Figure 9-2: Height of the Nile River Over Half of a Century
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Let’s look at Figure 9-3 which represents the data over an even
longer period. What now would you say about the height of
the Nile? Clearly the “threat” was non-existent, and only ap-
peared threatening because the time span represented by the
data was too short. The point of this display is that looking at
too-short a segment of experience frequently leads us into er-
ror. And “too short” may be as long as a century.

Figure 9-3: Height of the Nile River for an Extended Period of Time

Another example is the price of mercury, which is representa-
tive of all metals. Figure 9-4 shows a forecast made in 1976 by
natural-scientist Earl Cook. He combined a then-recent upturn
in prices with the notion that there is a finite amount of mer-
cury on the earth’s surface, plus the mathematical charm of
plotting a second-degree polynomial with the computer. Fig-
ures 9-5a and 9-5b show how the forecast was almost imme-
diately falsified, and the price continued its long-run decline.
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Figure 9-5a: Mercury Reserves, 1950-1990

Figure 9-4: The Price of Mercury, Cook, Earl, “Limits to Exploitation of
Non-Renewable Resources,” Science, 191, 20 Feb 1976, pp. 677-682
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Figure 9-5b: Mercury Price Indexes, 1950-1990

Lack of sound statistical intuition about variability can lead
to manipulation of the public being by unscrupulous persons.
Commodity funds sellers use a device of this sort to make their
results look good (The Washington Post, Sep 28, 1987, p. 71).
Some individual commodity traders inevitably do well in their
private trading, just by chance. A firm then hires one of them,
builds a public fund around him, and claims the private record
for the fund’s own history. But of course the private record
has no predictive power, any more than does the record of
someone who happened to get ten heads in a row flipping
coins.

How can we avoid falling into such traps? It is best to look at
the longest possible sweep of history. That is, use the largest
possible sample of observations to avoid sampling error. For
copper we have data going back to the 18th century B.C. In
Babylonia, over a period of 1000 years, the price of iron fell to
one fifth of what it was under Hammurabi (almost 4000 years
ago), and the price of copper then cost about a thousand times
its current price in the U.S., relative to wages. So the inevi-
table short-run increases in price should be considered in this
long-run context to avoid drawing unsound conclusions due
to small-sample variability.
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Proof that it is sound judgment to rely on the longest possible
series is given by the accuracy of predictions one would have
made in the past. In the context of copper, mercury, and other
raw materials, we can refer to a sample of years in the past,
and from those years imagine ourselves forecasting the follow-
ing year. If you had bet every time that prices would go down
in consonance with the long-run trend, you would have been
a big winner on average.

Regression to the mean

UP, DOWN “The Dodgers demoted
last year’s NL rookie of the year, OF
Todd Hollandsworth (.237, 1 HR, 18
RBI) to AAA Albuquerque...” (Item
in Washington Post, 6/14/97)

It is a well-known fact that the Rookie of
the Year in a sport such as baseball seldom
has as outstanding a season in her/his
sophomore year. Why is this so? Let’s use
the knowledge we have acquired of prob-
ability and simulation to explain this phe-
nomenon.

The matter at hand might be thought of as a problem in pure
probability—if one simply asks about the chance that a given
player (the Rookie of the Year) will repeat. Or it could be con-
sidered a problem in statistics, as discussed in coming chap-
ters. Let’s consider the matter in the context of baseball.

Imagine 10 mechanical “ball players,” each a machine that has
three white balls (hits) and 7 black balls. Every time the ma-
chine goes to bat, you take a ball out of the machine, look to
see if it is a hit or an out, and put it back. For each “ball player”
you do this 100 times. One of them is going to do better than
the others, and that one becomes the Rookie of the Year. (See
Table 9-2.)

Table 9-2
Rookie Seasons (100 at bats)

# of Hits Batting Average
32 .320
34 .340
33 .330
30 .300
35 .350
33 .330
30 .300
31 .310
28 .280
25 .250
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Would you now expect that the player who happened to be
the best among the top ten in the first year to again be the best
among the top ten in the next year, also? The sports writers
do. But of course this seldom happens. The Rookie of the Year
in major-league baseball seldom has as outstanding a season
in his sophomore year as in his rookie year. You can expect
him to do better than the average of all sophomores, but not
necessarily better than all of the rest of the group of talented
players who are now sophomores. (Please notice that we are
not saying that there is no long-run difference among the top
ten rookies. But suppose there is. Table 9-3 shows the season’s
performance for ten batters of differing performances).

Table 9-3
Season’s Performance

 “TRUE”
.270
.270
.280
.280
.300
.300
.320
.320
.330
.330

ROOKIE
.340
.240
.330
.300
.280
.420
.340
.350
.260
.330

We see from Figure 9-3 that we have ten batters whose “true”
batting averages range from .270 to .330. Their rookie year per-
formance (400 at bats), simulated on the basis of their
“true”average is on the right. Which one is the rookie of the
year? It’s #6, who hit .420 during the rookie session. Will he
do as well next year? Not likely—his “true” average is only
.300.

Try generating some rookie “seasons” yourself with the fol-
lowing commands, ranging the batter’s “true” performance
by altering what you count as a hit.

GENERATE 400 1,100 at-bats

COUNT at-bats <= 30 hits

DIVIDE hits 400 average
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Simulate a set of 10 or 20 such rookie seasons, and look at the
one who did best. How did his rookie season compare to his
“true” average?

The explanation is the presence of variability. And lack of rec-
ognition of the role of variability is at the heart of much falla-
cious reasoning. Being alert to the role of variability is crucial.

Or consider the example of having a superb meal at a restau-
rant—the best meal you have ever eaten. That fantastic meal
is almost surely the combination of the restaurant being better
than average, plus a lucky night for the chef and the dish you
ordered. The next time you return you can expect a meal bet-
ter than average, because the restaurant is better than average
in the long run. But the meal probably will be less good than
the superb one you had the first time, because there is no rea-
son to believe that the chef will get so lucky again and that the
same sort of variability will happen this time.

These examples illustrate the concept of “regression to the
mean”—a confusingly-titled and very subtle effect caused by
variability in results among successive samples drawn from
the same population. This phenomenon was given its title more
than a century ago by Francis Galton, one of the great founders
of modern statistics, when at first he thought that the height
of the human species was becoming more uniform, after he
noticed that the children of the tallest and shortest parents usu-
ally are closer to the average of all people than their parents
are. But later he discovered his fallacy—that the variability in
heights of children of quite short and quite tall parents also
causes some people to be even more exceptionally tall or short
than their parents. So the spread in heights among humans
remains much the same from generation to generation; there
is no “regression to the mean.” The heart of the matter is that
any exceptional observed case in a group is likely to be the
result of two forces—a) an underlying propensity to differ from
the average in one direction or the other, plus b) some chance
sampling variability that happens (in the observed case) to push
even further in the exceptional direction.

A similar phenomenon arises in direct-mail marketing. When
a firm tests many small samples of many lists of names and
then focuses its mass mailings on the lists that performed best
in the tests, the full list “rollouts” usually do not perform as
well as the samples did in the initial tests. It took many years
before mail-order experts (see especially Burnett, Ed) finally
understood that regression to the mean inevitably causes an im-
portant part of the dropoff from sample to rollout observed in
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the set of lists that give the very best results in a multi-list test.

The larger the test samples, the less the dropoff, of course, be-
cause larger samples reduce variability in results. But larger
samples risk more money. So the test-sample-size decision for
the marketer inevitably is a trade-off between accuracy and
cost.

And one last amusing example: After I lectured to the class on
this material, the student who had gotten the best grade on
the first mid-term exam came up after class and said: “Does
that mean that on the second mid-term I should expect to do
well but not the best in the class?” And that’s exactly what
happened: He had the second-best score in the class on the
next midterm.

A related problem arises when one conducts multiple tests, as
when testing thousands of drugs for therapeutic value. Some
of the drugs may appear to have a therapeutic effect just by
chance. We will discuss this problem later when discussing
hypothesis testing.

Summary and conclusion

The heart of statistics is clear thinking. One of the key elements
in being a clear thinker is to have a sound gut understanding
of statistical processes and variability. This chapter amplifies
this point.

A great benefit to using simulations rather than formulas to
deal with problems in probability and statistics is that the pres-
ence and importance of variability becomes manifest in the
course of the simulation work.


