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This chapter discusses how to assess the accuracy of a point
estimate of the mean, median, or other statistic of a sample.
We want to know: How close is our estimate of (say) the sample
mean likely to be to the population mean? The chapter begins
with an intuitive discussion of the relationship between a) a
statistic derived from sample data, and b) a parameter of a
universe from which the sample is drawn. Then we discuss
the actual construction of confidence intervals using two dif-
ferent approaches which produce the same numbers though
they have different logic. The following chapter shows illus-
trations of these procedures.

The accuracy of an estimate is a hard intellectual nut to crack,
so hard that for hundreds of years statisticians and scientists
wrestled with the problem with little success; it was not until
the last century or two that much progress was made. The ker-
nel of the problem is learning the extent of the variation in the
population. But whereas the sample mean can be used straight-
forwardly to estimate the population mean, the extent of varia-
tion in the sample does not directly estimate the extent of the
variation in the population, because the variation differs at
different places in the distribution, and there is no reason to
expect it to be symmetrical around the estimate or the mean.

The intellectual difficulty of confidence intervals is one rea-
son why they are less prominent in statistics literature and
practice than are tests of hypotheses (though statisticians of-
ten favor confidence intervals). Another reason is that tests of
hypotheses are more fundamental for pure science because
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they address the question that is at the heart of all
knowledge-getting: “Should these groups be considered dif-
ferent or the same?” The statistical inference represented by con-
fidence limits addresses what seems to be a secondary ques-
tion in most sciences (though not in astronomy or perhaps
physics): “How reliable is the estimate?” Still, confidence in-
tervals are very important in some applied sciences such as
geology—estimating the variation in grades of ores, for ex-
ample—and in some parts of business and industry.

Confidence intervals and hypothesis tests are not disjoint ideas.
Indeed, hypothesis testing of a single sample against a bench-
mark value is (in all schools of thought, I believe) operationally
identical with the most common way (Approach 1 below) of
constructing a confidence interval and checking whether it in-
cludes that benchmark value. But the underlying reasoning is
different for confidence limits and hypothesis tests.

The logic of confidence intervals is on shakier ground, in my
judgment, than that of hypothesis testing, though there are
many thoughtful and respected statisticians who argue that
the logic of confidence intervals is better grounded and leads
less often to error.

Confidence intervals are considered by many to be part of the
same topic as estimation, being an estimation of accuracy, in
their view. And confidence intervals and hypothesis testing are
seen as sub-cases of each other by some people. Whatever the
importance of these distinctions among these intellectual tasks
in other contexts, they need not concern us here.

Estimating the accuracy of a sample mean

If one draws a sample that is very, very large—large enough
so that one need not worry about sample size and dispersion
in the case at hand—from a universe whose characteristics one
knows, one then can deduce the probability that the sample mean
will fall within a given distance of the population mean. Intui-
tively, it seems as if one should also be able to reverse the pro-
cess—to infer something about the location of the population
mean from the sample mean. But this inverse inference turns out
to be a slippery business indeed.

Let’s put it differently: It is all very well to say—as one logi-
cally may—that on average the sample mean (or other point
estimator) equals a population parameter in most situations.
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But what about the result of any particular sample? How ac-
curate or inaccurate an estimate of the population mean is the
sample likely to produce?

Because the logic of confidence intervals is subtle, most statis-
tics texts skim right past the conceptual difficulties, and go
directly to computation. Indeed, the topic of confidence inter-
vals has been so controversial that some eminent statisticians
refuse to discuss it at all. And when the concept is combined
with the conventional algebraic treatment, the composite is
truly baffling; the formal mathematics makes impossible any
intuitive understanding. For students, “pluginski” is the only
viable option for passing exams.

With the resampling method, however, the estimation of con-
fidence intervals is easy. The topic then is manageable though
subtle and challenging—sometimes pleasurably so. Even be-
ginning undergraduates can enjoy the subtlety and find that
it feels good to stretch the brain and get down to fundamen-
tals.

One thing is clear: Despite the subtlety of the topic, the accu-
racy of estimates must be dealt with, one way or another.

I hope the discussion below resolves much of the confusion of
the topic.

The logic of confidence intervals

To preview the treatment of confidence intervals presented
below: We do not learn about the reliability of sample esti-
mates of the mean (and other parameters) by logical inference
from any one particular sample to any one particular universe,
because this cannot be done in principle. Instead, we investi-
gate the behavior of various universes in the neighborhood of
the sample, universes whose characteristics are chosen on the
basis of their similarity to the sample. In this way the estima-
tion of confidence intervals is like all other statistical inference:
One investigates the probabilistic behavior of one or more hy-
pothesized universes that are implicitly suggested by the
sample evidence but are not logically implied by that evidence.

The examples worked in the following chapter help explain
why statistics is a difficult subject. The procedure required to
transit successfully from the original question to a statistical
probability, and then through a sensible interpretation of the
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probability, involves a great many choices about the appro-
priate model based on analysis of the problem at hand; a wrong
choice at any point dooms the procedure. The actual compu-
tation of the probability—whether done with formulaic
probability theory or with resampling simulation—is only a
very small part of the procedure, and it is the least difficult
part if one proceeds with resampling. The difficulties in the
statistical process are not mathematical but rather stem from
the hard clear thinking needed to understand the nature of the
situation and to ascertain the appropriate way to model it.

Again, the purpose of a confidence interval is to help us as-
sess the reliability of a statistic of the sample—for example, its
mean or median—as an estimator of the parameter of the uni-
verse. The line of thought runs as follows: It is possible to map
the distribution of the means (or other such parameter) of
samples of any given size (the size of interest in any investiga-
tion usually being the size of the observed sample) and of any
given pattern of dispersion (which we will assume for now
can be estimated from the sample) that a universe in the neigh-
borhood of the sample will produce. For example, we can com-
pute how large an interval to the right and left of a postulated
universe’s mean is required to include 45 percent of the
samples on either side of the mean.

What cannot be done is to draw conclusions from sample evi-
dence about the nature of the universe from which it was
drawn, in the absence of some information about the set of uni-
verses from which it might have been drawn. That is, one can
investigate the behavior of one or more specified universes,
and discover the absolute and relative probabilities that the
given specified universe(s) might produce such a sample. But the
universe(s) to be so investigated must be specified in advance
(which is consistent with the Bayesian view of statistics). To
put it differently, we can employ probability theory to learn
the pattern(s) of results produced by samples drawn from a
particular specified universe, and then compare that pattern
to the observed sample. But we cannot infer the probability
that that sample was drawn from any given universe in the
absence of knowledge of the other possible sources of the
sample. That is a subtle difference, I know, but I hope that the
following discussion makes it understandable.
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Computing confidence intervals

In the first part of the discussion we shall leave aside the issue
of estimating the extent of the dispersion—a troublesome mat-
ter, but one which seldom will result in unsound conclusions
even if handled crudely. To start from scratch again: The first—
and seemingly straightforward—step is to estimate the mean
of the population based on the sample data. The next and more
complex step is to ask about the range of values (and their
probabilities) that the estimate of the mean might take—that
is, the construction of confidence intervals. It seems natural to
assume that if our best guess about the population mean is
the value of the sample mean, our best guesses about the vari-
ous values that the population mean might take if unbiased
sampling error causes discrepancies between population pa-
rameters and sample statistics, should be values clustering
around the sample mean in a symmetrical fashion (assuming
that asymmetry is not forced by the distribution—as for ex-
ample, the binomial is close to symmetric near its middle val-
ues). But how far away from the sample mean might the popu-
lation mean be?

Let’s walk slowly through the logic, going back to basics to
enhance intuition. Let’s start with the familiar saying, “The
apple doesn’t fall far from the tree.” Imagine that you are in a
very hypothetical place where an apple tree is above you, and
you are not allowed to look up at the tree, whose trunk has an
infinitely thin diameter. You see an apple on the ground. You
must now guess where the trunk (center) of the tree is. The
obvious guess for the location of the trunk is right above the
apple. But the trunk is not likely to be exactly above the apple
because of the small probability of the trunk being at any par-
ticular location, due to sampling dispersion.

Though you find it easy to make a best guess about where the
mean is (the true trunk), with the given information alone you
have no way of making an estimate of the probability that the
mean is one place or another, other than that the probability is
the same that the tree is to the north or south, east or west, of
you. You have no idea about how far the center of the tree is
from you. You cannot even put a maximum on the distance it
is from you, and without a maximum you could not even rea-
sonably assume a rectangular distribution, or a Normal dis-
tribution, or any other.
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Next you see two apples. What guesses do you make now?
The midpoint between the two obviously is your best guess
about the location of the center of the tree. But still there is no
way to estimate the probability distribution of the location of
the center of the tree.

Now assume you are given still another piece of information:
The outermost spread of the tree’s branches (the range) equals
the distance between the two apples you see. With this infor-
mation, you could immediately locate the boundaries of the lo-
cation of the center of the tree. But this is only because the an-
swer you sought was given to you in disguised form.

You could, however, come up with some statements of relative
probabilities. In the absence of prior information on where the
tree might be, you would offer higher odds that the center (the
trunk) is in any unit of area close to the center of your two
apples than in a unit of area far from the center. That is, if you
are told that either one apple, or two apples, came from one of
two specified trees whose locations are given, with no reason to
believe it is one tree or the other (later, we can put other prior
probabilities on the two trees), and you are also told the dis-
persions, you now can put relative probabilities on one tree or
the other being the source. (Note to the advanced student: This
is like the Neyman-Pearson procedure, and it is easily recon-
ciled with the Bayesian point of view to be explored later. One
can also connect this concept of relative probability to the
Fisherian concept of maximum likelihood—which is a prob-
ability relative to all others). And you could list from high to
low the probabilities for each unit of area in the neighborhood
of your apple sample. But this procedure is quite different from
making any single absolute numerical probability estimate of
the location of the mean.

Now let’s say you see 10 apples on the ground. Of course your
best estimate is that the trunk of the tree is at their arithmetic
center. But how close to the actual tree trunk (the population
mean) is your estimate likely to be? This is the question in-
volved in confidence intervals. We want to estimate a range
(around the center, which we estimate with the center mean
of the sample, we said) within which we are pretty sure that
the trunk lies.

To simplify, we consider variation along only one dimension—
that is, on (say) a north-south line rather than on two dimen-
sions (the entire surface).
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We first note that you have no reason to estimate the trunk’s
location to be outside the sample pattern, or at its edge, though
it could be so in principle.

If the pattern of the 10 apples is tight, you imagine the pattern
of the likely locations of the population mean to be tight; if
not, not. That is, it is intuitively clear that there is some connec-
tion between how spread out are the sample obervations and your
confidence about the location of the population mean. For example,
consider two patterns of a thousand apples, one with twice
the spread of another, where we measure spread by (say) the
diameter of the circle that holds the inner half of the apples
for each tree, or by the standard deviation. It makes sense that
if the two patterns have the same center point (mean), you
would put higher odds on the tree with the smaller spread
being within some given distance—say, a foot—of the esti-
mated mean. But what odds would you give on that bet?

Procedure for estimating confidence intervals

Here is a canonical list of questions that help organize one’s
thinking when constructing confidence intervals. The list is
comparable to the lists for questions in probability and for
hypothesis testing provided in earlier chapters. This set of
questions will be applied operationally in Chapter 21.

What Is The Question?

What is the purpose to be served by answering the question?

Is this a “probability” or a “statistics” question?

If the Question Is a Statistical Inference Question:

What is the form of the statistics question?
Hypothesis test or confidence limits or other inference?

Assuming Question Is About Confidence Limits:

What is the description of the sample that has been observed?
Raw data?
Statistics of the sample?
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Which universe? Assuming that the observed sample is representa-
tive of the universe from which it is drawn, what is your best guess
of the properties of the universe whose parameter you wish to make
statements about? Finite or infinite? Bayesian possibilities?

Which parameter do you wish to make statements about?
Mean, median, standard deviation, range, interquartile range,
other?

Which symbols for the observed entities?
Discrete or continuous?
What values or ranges of values?

If the universe is as guessed at, for which samples do you wish to
estimate the variation? (Answer: samples the same size as has
been observed)

Here one may continue with the conventional method, using
perhaps a t or F or chi-square test or whatever. Everything up
to now is the same whether continuing with resampling or with
standard parametric test.

What procedure to produce the original entities in the sample?
What universe will you draw them from?
Random selection?
What size resample?
Simple (single step) or complex (multiple “if” drawings)?

What procedure to produce resamples?
With or without replacement?
Number of drawings?

What to record as result of resample drawing?
Mean, median, or whatever of resample

Stating the Distribution of Results

Histogram, frequency distribution, other?

Choice Of Confidence Bounds

One- or two-tailed?

90%, 95%, etc.?

Computation of Probabilities Within Chosen Bounds
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Summary

This chapter discussed the theoretical basis for assessing the
accuracy of population averages from sample data. The fol-
lowing chapter shows two very different approaches to confi-
dence intervals, and provides examples of the computations.


