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Issues in determining sample size

How Large a
Sample?

Sometime in the course of almost every study—preferably
early in the planning stage—the researcher must decide how
large a sample to take. Deciding the size of sample to take is
likely to puzzle and distress you at the beginning of your re-
search career. You have to decide somehow, but there are no
simple, obvious guides for the decision.

For example, one of the first studies I worked on was a study
of library economics (Fussler and Simon, 1961), which required
taking a sample of the books from the library’s collections.
Sampling was expensive, and we wanted to take a correctly
sized sample. But how large should the sample be? The longer
we searched the literature, and the more people we asked, the
more frustrated we got because there just did not seem to be a
clear-cut answer. Eventually we found out that, even though
there are some fairly rational ways of fixing the sample size,
most sample sizes in most studies are fixed simply (and irra-
tionally) by the amount of money that is available or by the
sample size that similar pieces of research have used in the
past.

The rational way to choose a sample size is by weighing the
benefits you can expect in information against the cost of in-
creasing the sample size. In principle you should continue to
increase the sample size until the benefit and cost of an addi-
tional sampled unit are equal. 1

The benefit of additional information is not easy to estimate
even in applied research, and it is extraordinarily difficult to
estimate in basic research. Therefore, it has been the practice
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of researchers to set up target goals of the degree of accuracy
they wish to achieve, or to consider various degrees of accu-
racy that might be achieved with various sample sizes, and
then to balance the degree of accuracy with the cost of achiev-
ing that accuracy. The bulk of this chapter is devoted to learn-
ing how the sample size is related to accuracy in simple situa-
tions.

In complex situations, however, and even in simple situations
for beginners, you are likely to feel frustrated by the difficul-
ties of relating accuracy to sample size, in which case you cry
out to a supervisor, “Don’t give me complicated methods, just
give me a rough number based on your greatest experience.”
My inclination is to reply to you, “Sometimes life is hard and
there is no shortcut.” On the other hand, perhaps you can get
more information than misinformation out of knowing sample
sizes that have been used in other studies. Table 24-1 shows
the middle (modal), 25th percentile, and 75th percentile scores
for—please keep this in mind—National Opinion Surveys in the
top panel. The bottom panel shows how subgroup analyses
affect sample size.

Pretest sample sizes are smaller, of course, perhaps 25-100 ob-
servations. Samples in research for Master’s and Ph.D. theses
are likely to be closer to a pretest than to national samples.

Table 24-1
Most Common Sample Sizes Used for National and

Regional Studies By Subject Matter

Subject Matter National Regional

Mode Q3 Q1 Mode Q3 Q1

Financial 1000+ — — 100 400 50

Medical 1000+ 1000+ 500 1000+ 1000+ 250

Other Behavior 1000+ — — 700 1000 300

Attitudes 1000+ 1000+ 1500 700 1000 400

Laboratory
Experiments — — — 100 200 50
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Typical Sample Sizes for Studies of Human
and Institutional Populations

People or Households Institutions

Subgroup Analyses National Special National Special

Average 1500-2500 500-1000 500-1000 200-500

Many 2500+ 1000+ 1000+ 500+

SOURCE: From Applied Sampling, by Seymour Sudman, pp. 86-87. Copy-
right 1976 by Academic Press, reprinted by permission.

Once again, the sample size ought to depend on the propor-
tions of the sample that have the characteristics you are inter-
ested in, the extent to which you want to learn about subgroups
as well as the universe as a whole, and of course the purpose
of your study, the value of the information, and the cost. Also,
keep in mind that the added information that you obtain from
an additional sample observation tends to be smaller as the
sample size gets larger. You must quadruple the sample to
halve the error.

Now let us consider some specific cases. The first examples
taken up here are from the descriptive type of study, and the
latter deal with sample sizes in relationship research.

Some practical examples

Example 24-1

What proportion of the homes in Countryville are tuned into
television station WCNT’s ten o’clock news program? That is
the question your telephone survey aims to answer, and you
want to know how many randomly selected homes you must
telephone to obtain a sufficiently large sample.

Begin by guessing the likeliest answer, say 30 percent in this
case. Do not worry if you are off by 5 per cent or even 10 per
cent; and you will probably not be further off than that. Select
a first-approximation sample size of perhaps 400; this num-
ber is selected from my general experience, but it is just a start-
ing point. Then proceed through the first 400 numbers in the
random-number table, marking down a yes for numbers 1-3
and no for numbers 4-10 (because 3/10 was your estimate of
the proportion listening). Then add the number of yes and no.
Carry out perhaps ten sets of such trials, the results of which
are in Table 24-2.
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Table 24-2

% DIFFERENCE FROM
Trial Number “Yes” Number “No”  Expected Mean of 30%

(120 “Yes”)

1 115 285 1.25
2 119 281 0.25
3 116 284 1.00
4 114 286 1.50
5 107 293 3.25
6 116 284 1.00
7 132 268 3.00
8 123 277 0.75
9 121 279 0.25
10 114 286 1.50

Mean 1.37

Based on these ten trials, you can estimate that if you take a
sample of 400 and if the “real” viewing level is 30 percent, your
average percentage error will be 1.375 percent on either side
of 30 percent. That is, with a sample of 400, half the time your
error will be greater than 1.375 percent if 3/10 of the universe
is listening.

Now you must decide whether the estimated error is small
enough for your needs. If you want greater accuracy than a
sample of 400 will give you, increase the sample size, using
this important rule of thumb: To cut the error in half, you must
quadruple the sample size. In other words, if you want a sample
that will give you an error of only 0.55 percent on the average,
you must increase the sample size to 1,600 interviews. Simi-
larly, if you cut the sample size to 100, the average error will
be only 2.75 percent (double 1.375 percent) on either side of 30
percent. If you distrust this rule of thumb, run ten or so trials
on sample sizes of 100 or 1,600, and see what error you can
expect to obtain on the average.

If the “real” viewership is 20 percent or 40 percent, instead of
30 percent, the accuracy you will obtain from a sample size of
400 will not be very different from an “actual” viewership of
30 percent, so do not worry about that too much, as long as
you are in the right general vicinity.

Accuracy is slightly greater in smaller universes but only
slightly. For example, a sample of 400 would give perfect accu-
racy if Countryville had only 400 residents. And a sample of
400 will give slightly greater accuracy for a town of 800 resi-
dents than for a city of 80,000 residents. But, beyond the point
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at which the sample is a large fraction of the total universe, there
is no difference in accuracy with increases in the size of uni-
verse. This point is very important. For any given level of ac-
curacy, identical sample sizes give the same level of accuracy
for Podunk (population 8,000) or New York City (population
8 million). The ratio of the sample size to the population of
Podunk or New York City means nothing at all, even though
it intuitively seems to be important.

The size of the sample must depend upon which population
or subpopulations you wish to describe. For example, A.
Kinsey’s sample size would have seemed large, by customary
practice, for generalizations about the United States popula-
tion as a whole. But, as Kinsey explains: “The chief concern of
the present study is an understanding of the sexual behavior
of each segment of the population, and it is only secondarily con-
cerned with generalization for the population as a whole”
(Kinsey, et al., 1948, p. 82, italics added). Therefore Kinsey’s
sample had to include subsamples large enough to obtain the
desired accuracy in each of these sub-universes. The U.S. Cen-
sus offers a similar illustration. When the U.S. Bureau of the
Census aims to estimate only a total or an average for the
United States as a whole—as, for example, in the Current
Population Survey estimate of unemployment—a sample of
perhaps 50,000 is big enough. But the decennial census aims
to make estimates for all the various communities in the coun-
try, estimates that require adequate subsamples in each of these
sub-universes; such is the justification for the decennial cen-
sus’ sample size of so many millions. Television ratings illus-
trate both types of purpose. Nielsen ratings, for example, are
sold primarily to national network advertisers. These adver-
tisers on national television networks usually sell their goods
all across the country and are therefore interested primarily
in the total United States viewership for a program, rather than
in the viewership in various demographic subgroups. The ap-
propriate calculations for Nielsen sample size will therefore
refer to the total United States sample. But other organizations
sell rating services to local television and radio stations for use
in soliciting advertising over the local stations rather than over
the network as a whole. Each local sample must then be large
enough to provide reasonable accuracy, and, considered as a
whole, the samples for the local stations therefore add up to a
much larger sample than the Nielsen and other nationwide
samples.

The problem may be handled with the following
RESAMPLING STATS program. This program represents



393Chapter 24—How Large a Sample?

viewers with random numbers between 1 and 100 and, con-
sistent with our guess that 30% are tuned in, represents view-
ers with the numbers 1-30. It GENERATES a sample of 400
such numbers, COUNTS the “viewers,” then finds how much
this sample diverges from the expected number of viewers
(30% of 400 = 120). It repeats this procedure 1000 times, and
then calculates the average divergence.

REPEAT 1000
Do 1000 trials

GENERATE 400 1,100 a
Generate 400 numbers between 1 and 100, let 1-30 = viewer

COUNT a <=30 b
Count the viewers

SUBTRACT 120 b c
How different from expected?

ABS c d
Absolute value of difference?

DIVIDE d 400 e
Express as a proportion of sample

SCORE e z
Keep score of the result

END

MEAN z k
Find the mean divergence

Note:  The file “tvviewer” on the Resampling Stats software
disk contains this set of commands.

It is a simple matter to go back and try a sample size of (say)
1600 rather than 400, and examine the effect on the mean dif-
ference.

Example 24-2

This example, like Example 24-1, illustrates the choice of
sample size for estimating a summarization statistic. Later ex-
amples deal with sample sizes for probability statistics.

Hark back to the pig-ration problems presented earlier, and
consider the following set of pig weight-gains recorded for ra-
tion A: 31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 30. Assume that
our purpose now is to estimate the average weight gain for
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ration A, so that the feed company can advertise to farmers
how much weight gain to expect from ration A. If the universe
is made up of pig weight-gains like those we observed, we
can simulate the universe with, say, 1 million weight gains of
thirty-one pounds, 1 million of thirty-four pounds, and so on
for the twelve observed weight gains. Or, more conveniently,
as accuracy will not be affected much, we can make up a uni-
verse of say, thirty cards for each thirty-one-pound gain, thirty
cards for each thirty-four-pound gains and so forth, yielding
a deck of 30 x 12 = 360 cards. Then shuffle, and, just for a start-
ing point, try sample sizes of twelve pigs. The means of the
samples for twenty such trials are as in Table 24-3.

Now ask yourself whether a sample size of twelve pigs gives
you enough accuracy. There is a .5 chance that the mean for
the sample will be more than .65 or .92 pound (the two me-
dian deviations) or (say) .785 pound (the midpoint of the two
medians) from the mean of the universe that generates such
samples, which in this situation is 31.75 pounds. Is this close
enough? That is up to you to decide in light of the purposes
for which you are running the experiment. (The logic of the
inference you make here is inevitably murky, and use of the
term “real mean” can make it even murkier, as is seen in the
discussion in Chapters 20-22 on confidence intervals.)

To see how accuracy is affected by larger samples, try a sample
size of forty-eight “pigs” dealt from the same deck. (But, if
the sample size were to be much larger than forty-eight, you
might need a “universe” greater than 360 cards.) The results
of twenty trials are in Table 24-4.

In half the trials with a sample size of forty-eight the differ-
ence between the sample mean and the “real” mean of 31.75
will be .36 or .37 pound (the median deviations), smaller than
with the values of .65 and .92 for samples of 12 pigs. Again, is
this too little accuracy for you? If so, increase the sample size
further.
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Table 24-3

Absolute Devisation Absolute Deviation
Trial Mean of Trial Mean Trial Mean of Trial Mean

from Actual Mean from Actual Mean

1 31.77 .02 11 32.10 .35
2 32.27 1.52 12 30.67 1.08
3 31.75 .00 13 32.42 .67
4 30.83 .92 14 30.67 1.08
5 30.52 1.23 15 32.25 .50
6 31.60 .15 16 31.60 .15
7 32.46 .71 17 32.33 .58
8 31.10 .65 18 33.08 1.33
9 32.42 .35 19 33.01 1.26
10 30.60 1.15 20 30.60 1.15

Mean 31.75

The attentive reader of this example may have been troubled
by this question: How do you know what kind of a distribu-
tion of values is contained in the universe before the sample is
taken? The answer is that you guess, just as in Example 24-1
you guessed at the mean of the universe. If you guess wrong,
you will get either more accuracy or less accuracy than you
expected from a given sample size, but the results will not be
fatal; if you obtain more accuracy than you wanted, you have
wasted some money, and, if you obtain less accuracy, your
sample dispersion will tell you so, and you can then augment
the sample to boost the accuracy. But an error in guessing will
not introduce error into your final results.

Table 24-4

Absolute Deviation Absolute Deviation
Trial Mean of Trial Mean Trial Mean of Trial Mean

from Actual Mean from Actual Mean

1 31.80 .05 11 31.93 .18
2 32.27 .52 12 32.40 .65
3 31.82 .07 13 31.32 .43
4 31.39 .36 14 32.07 .68
5 31.22 .53 15 32.03 .28
6 31.88 .13 16 31.95 .20
7 31.37 .38 17 31.75 .00
8 31.48 .27 18 31.11 .64
9 31.20 .55 19 31.96 .21
10 32.01 .26 20 31.32 .43

Mean 31.75

The guess should be based on something, however. One source
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for guessing is your general knowledge of the likely disper-
sion; for example, if you were estimating male heights in
Rhode Island, you would be able to guess what proportion of
observations would fall within 2 inches, 4 inches, 6 inches, and
8 inches, perhaps, of the real value. Or, much better yet, a very
small pretest will yield quite satisfactory estimates of the dis-
persion.

Here is a RESAMPLING STATS program that will let you try
different sample sizes, and then take bootstrap samples to de-
termine the range of sampling error. You set the sample size
with the DATA command, and the NUMBERS command
records the data. Above I noted that we could sample without
replacement from a “deck” of thirty “31”’s, thirty “34”’s, etc,
as a substitute for creating a universe of a million “31”’s, a
million “34”’s, etc. We can achieve the same effect if we re-
place each card after we sample it; this is equivalent to creat-
ing a “deck” of an infinite number of “31”’s, “34”’s, etc. That
is what the SAMPLE command does, below. Note that the
sample size is determined by the value of the “sampsize” vari-
able, which you set at the beginning. From here on the pro-
gram takes the MEAN of each sample, keeps SCORE of that
result, and produces a HISTOGRAM. The PERCENTILE com-
mand will also tell you what values enclose 90% of all sample
results, excluding those below the 5th percentile and above
the 95th percentile.

Here is a program for a sample size of 12.

DATA (12) sampsize

NUMBERS (31 34 29 26 32 35 38 34 32 31 30 29) a

REPEAT 1000

SAMPLE sampsize a b

MEAN b c

SCORE c z

END

HISTOGRAM z

PERCENTILE z (5 95) k

PRINT k

Bin Center Freq  Pct Cum Pct
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29.0 2 0.2 0.2
29.5 4 0.4 0.6
30.0 30 3.0 3.6
30.5 71 7.1 10.7
31.0 162 16.2 26.9
31.5 209 20.9 47.8
32.0 237 23.7 71.5
32.5 143 14.3 85.8
33.0 90 9.0 94.8
33.5 37 3.7 98.5
34.0 12 1.2 99.7
34.5 3 0.3 100.0

k = 30.417   33.25

Example 24-3

This is the first example of sample-size estimation for proba-
bility (testing) statistics, rather than the summarization statis-
tics dealt with above.

Recall the problem of the sex of fruit-fly offspring discussed
in Example 15-1. The question now is, how large a sample is
needed to determine whether the radiation treatment results
in a sex ratio other than a 50-50 male-female split?

The first step is, as usual, difficult but necessary. As the re-
searcher, you must guess what the sex ratio will be if the treat-
ment does have an effect. Let’s say that you use all your gen-
eral knowledge of genetics and of this treatment and that you
guess the sex ratio will be 75 percent males and 25 percent fe-
males if the treatment alters the ratio from 50-50.

In the random-number table let “01-25” stand for females and
“26-00” for males. Take twenty successive pairs of numbers
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for each trial, and run perhaps fifty trials, as in Table 24-5.

Table 24-5

Trial Females Males Trial Females Males Trial Females Males

1 4 16 18 7 13 34 4 16
2 6 14 19 3 17 35 6 14
3 6 14 20 7 13 36 3 17
4 5 15 21 4 16 37 8 12
5 5 15 22 4 16 38 4 16
6 3 17 23 5 15 39 3 17
7 7 13 24 8 12 40 6 14
8 6 14 25 4 16 41 5 15
9 3 17 26 1 19 42 2 18

10 2 18 27 5 15 43 8 12
11 6 14 28 3 17 44 4 16
12 1 19 29 8 12 45 6 14
13 6 14 30 8 12 46 5 15
14 3 17 31 5 15 47 3 17
15 1 19 32 3 17 48 5 15
16 5 15 33 4 16 49 3 17
17 5 15 50 5 15

In Example 15-1 with a sample of twenty flies that contained
fourteen or more males, we found only an 8% probability that
such an extreme sample would result from a 50-50 universe.
Therefore, if we observe such an extreme sample, we rule out
a 50-50 universe.

Now Table 24-5 tells us that, if the ratio is really 75 to 25, then
a sample of twenty will show fourteen or more males forty-two
of fifty times (84 percent of the time). If we take a sample of
twenty flies and if the ratio is really 75-25, we will make the
correct decision by deciding that the split is not 50-50 84 per-
cent of the time.

Perhaps you are not satisfied with reaching the right conclu-
sion only 84 percent of the time. In that case, still assuming
that the ratio will really be 75-25 if it is not 50-50, you need to
take a sample larger than twenty flies. How much larger? That
depends on how much surer you want to be. Follow the same
procedure for a sample size of perhaps eighty flies. First work
out for a sample of eighty, as was done in Example 15-1 for a
sample of twenty, the number of males out of eighty that you
would need to find for the odds to be, say, 9 to 1 that the uni-
verse is not 50-50; your estimate turns out to be forty-eight
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males. Then run fifty trials of eighty flies each on the basis of
75-25 probability, and see how often you would not get as many
as forty-eight males in the sample. Table 24-6 shows the re-
sults we got. No trial was anywhere near as low as forty-eight,
which suggests that a sample of eighty is larger than neces-
sary if the split is really 75-25.

Table 24-6

Trial Females Males Trial Females Males Trial Females Males

1 21 59 18 13 67 34 21 59
2 22 58 19 19 61 35 17 63
3 13 67 20 17 63 36 22 58
4 15 65 21 17 63 37 19 61
5 22 58 22 18 62 38 21 59
6 21 59 23 26 54 39 21 59
7 13 67 24 20 60 40 21 59
8 24 56 25 16 64 41 21 59
9 16 64 26 22 58 42 18 62
10 21 59 27 16 64 43 19 61
11 20 60 28 21 59 44 17 63
12 19 61 29 22 58 45 13 67
13 21 59 30 21 59 46 16 64
14 17 63 31 22 58 47 21 59
15 22 68 32 19 61 48 16 64
16 22 68 33 10 70 49 17 63
17 17 63 50 21 59

Table 24-7

Trial Females Males Trial Females Males Trial Females Males
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1 35 45 18 32 48 34 35 45
2 36 44 19 28 52 35 36 44
3 35 45 20 32 48 36 29 51
4 35 45 21 33 47 37 36 44
5 36 44 22 37 43 38 36 44
6 36 44 23 36 44 39 31 49
7 36 44 24 31 49 40 29 51
8 34 46 25 27 53 41 30 50
9 34 46 26 30 50 42 35 45

10 29 51 27 31 49 43 32 48
11 29 51 28 33 47 44 30 50
12 32 48 29 37 43 45 37 43
13 29 51 30 30 50 46 31 49
14 31 49 31 31 49 47 36 44
15 28 52 32 32 48 48 34 64
16 33 47 33 34 46 49 29 51
17 36 44 50 37 43

It is obvious that, if the split you guess at is 60 to 40 rather
than 75 to 25, you will need a bigger sample to obtain the “cor-
rect” result with the same probability. For example, run some
eighty-fly random-number trials with 1-40 representing males
and 51-100 representing females. Table 24-7 shows that only
twenty-four of fifty (48 percent) of the trials reach the neces-
sary cut-off at which one would judge that a sample of eighty
really does not come from a universe that is split 50-50; there-
fore, a sample of eighty is not big enough if the split is 60-40.

To review the main principles of this example: First, the closer
together the two possible universes from which you think the
sample might have come (50-50 and 60-40 are closer together
than are 50-50 and 75-25), the larger the sample needed to dis-
tinguish between them. Second, the surer you want to be that
you reach the right decision based upon the sample evidence,
the larger the sample you need.

The problem may be handled with the following
RESAMPLING STATS program. We construct a benchmark
universe that is 60-40 male-female, and take samples of size
80, observing whether the numbers of males and females dif-
fers enough in these resamples to rule out a 50-50 universe.
Recall that we need at least 48 males to say that the propor-
tion of males is not 50%.

REPEAT 1000
Do 1000 trials
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GENERATE 80 1,10 a
Generate 80 “flies,” each represented by a number between 1 and 10
where <= 6 is a male

COUNT a <=6 b
Count the males

SCORE b z
Keep score

END

COUNT z >=48 k
How many of the trials produced more than 48 males?

DIVIDE k 1000 kk
Convert to a proportion

PRINT kk

If the result “kk” is close to 1, we then know that samples of
size 80 will almost always produce samples with enough males
to avoid misleading us into thinking that they could have come
from a universe in which males and females are split 50-50.

Example 24-3

Referring back to Example 15-3, on the cable-television poll,
how large a sample should you have taken? Pretend that the
data have not yet been collected. You need some estimate of
how the results will turn out before you can select a sample
size. But you have not the foggiest idea how the results will
turn out. Therefore, go out and take a very small sample,
maybe ten people, to give you some idea of whether people
will split quite evenly or unevenly. Seven of your ten initial
interviews say they are for CATV. How large a sample do you
now need to provide an answer of which you can be fairly
sure?

Using the techniques of the previous chapter, we estimate
roughly that from a sample of fifty people at least thirty-two
would have to vote the same way for you to believe that the
odds are at least 19 to 1 that the sample does not misrepresent
the universe, that is, that the sample does not show a majority
different from that of the whole universe if you polled every-
one. This estimate is derived from the resampling experiment
described in example 15-3. The table shows that if half the
people (or more) are against cable television, only one in
twenty times will thirty-two (or more) people of a sample of
fifty say that they are for cable television; that is, only one of
twenty trials with a 50-50 universe will produce as many as
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thirty-two yeses if a majority of the population is against it.

Therefore, designate numbers 1-30 as no and 31-00 as yes in
the random-number table (that is, 70 percent, as in your esti-
mate based on your presample of ten), work through a trial
sample size of fifty, and count the number of yeses. Run through
perhaps ten or fifteen trials, and reckon how often the observed
number of yeses exceeds thirty-two, the number you must ex-
ceed for a result you can rely on. In Table 24-8 we see that a
sample of fifty respondents, from a universe split 70-30, will
show that many yeses a preponderant proportion of the time—
in fact, in fifteen of fifteen experiments; therefore, the sample
size of fifty is large enough if the split is “really” 70-30.

Table 24-8

Trial No Yes Trial No Yes

1 13 37 9 15 35
2 14 36 10 9 41
3 18 32 11 15 35
4 10 40 12 15 35
5 13 37 13 9 41
6 15 35 14 16 34
7 14 36 15 17 33

The following RESAMPLING STATS program takes samples
of size 50 from a universe that is 70% “yes.”  It then observes
how often such samples produce more than 32 “yeses”—the
number we must get if we are to be sure that the sample is not
from a 50/50 universe.

REPEAT 1000
Do 1000 trials

GENERATE 50 1,10 a
Generate 50 numbers between 1 and 10, let 1-7 = yes.

COUNT a <=7 b
Count the “yeses”

SCORE b z
Keep score of the result

END

COUNT z >=32 k
Count how often the sample result >= our 32 cutoff (recall that samples
with 32 or fewer “yeses” cannot be ruled out of a 50/50 universe)

DIVIDE k 1000 kk
Convert to a proportion
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If “kk” is close to 1, we can be confident that this sample will
be large enough to avoid a result that we might mistakenly
think comes from a 50/50 universe (provided that the real uni-
verse is 70% favorable).

Example 24-4

How large a sample is needed to determine whether there is
any difference between the two pig rations in Example 15-7?
The first step is to guess the results of the tests. You estimate
that the average for ration A will be a weight gain of thirty-two
pounds. You further guess that twelve pigs on ration A might
gain thirty-six, thirty-five, thirty-four, thirty-three, thirty-three,
thirty-two, thirty-two, thirty-one, thirty-one, thirty, twenty-
nine, and twenty-eight pounds. This set of guesses has an equal
number of pigs above and below the average and more pigs
close to the average than farther away. That is, there are more
pigs at 33 and 31 pounds than at 36 and 28 pounds. This would
seem to be a reasonable distribution of pigs around an aver-
age of 32 pounds. In similar fashion, you guess an average
weight gain of 28 pounds for ration B and a distribution of 32,
31, 30, 29, 29, 28, 28, 27, 27, 26, 25, and 24 pounds.

Let us review the basic strategy. We want to find a sample size
large enough so that a large proportion of the time it will re-
veal a difference between groups big enough to be accepted
as not attributable to chance. First, then, we need to find out
how big the difference must be to be accepted as evidence that
the difference is not attributable to chance. We do so from tri-
als with samples that size from the benchmark universe. We
state that a difference larger than the benchmark universe will
usually produce is not attributable to chance.

In this case, let us try samples of 12 pigs on each ration. First
we draw two samples from a combined benchmark universe
made up of the results that we have guessed will come from
ration A and ration B. (The procedure is the same as was fol-
lowed in Example 15-7.) We find that in 19 out of 20 trials the
difference between the two observed groups of 12 pigs was 3
pounds or less. Now we investigate how often samples of 12
pigs, drawn from the separate universes, will show a mean dif-
ference as large as 3 pounds. We do so by making up a deck of
25 or 50 cards for each of the 12 hypothesized A’s and each of
the 12 B’s, with the ration name and the weight gain written
on it—that is, a deck of, say, 300 cards for each ration. Then
from each deck we draw a set of 12 cards at random, record
the group averages, and find the difference.
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Here is the same work done with more runs on the computer:

NUMBERS (31 34 29 26 32 35 38 34 32 31 30 29) a

NUMBERS (32 32 31 30 29 29 29 28 28 26 26 24) b

REPEAT 1000

SAMPLE 12 a aa

MEAN aa aaa

SAMPLE 12 b bb

MEAN bb bbb

SUBTRACT aaa bbb c

SCORE c z

END

HISTOGRAM z

Difference in mean weights between resamples

Therefore, two samples of twelve pigs each are clearly large
enough, and, in fact, even smaller samples might be sufficient

if the universes are really like those we guessed at. If, on the
other hand, the differences in the guessed universes had been
smaller, then twelve-pig groups would have seemed too small
and we would then have had to try out larger sample sizes,
say forty-eight pigs in each group and perhaps 200 pigs in each
group if forty-eight were not enough. And so on until the
sample size is large enough to promise the accuracy we want.
(In that case, the decks would also have to be much larger, of
course.)

If we had guessed different universes for the two rations, then
the sample sizes required would have been larger or smaller.
If we had guessed the averages for the two samples to be closer
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together, then we would have needed larger samples. Also, if
we had guessed the weight gains within each universe to be
less spread out, the samples could have been smaller and vice
versa.

The following RESAMPLING STATS program first records the
data from the two samples, and then draws from decks of in-
finite size by sampling with replacement from the original
samples.

DATA (36 35 34 33 33 32 32 31 31 30 29 28) a

DATA (32 31 30 29 29 28 28 27 27 26 25 24) b

REPEAT 1000

SAMPLE 12 a aa
Draw a sample of 12 from ration a with replacement (this is like draw-
ing from a large deck made up of many replicates of the elements in
a)

SAMPLE 12 b bb
Same for b

MEAN aa aaa
Find the averages of the resamples

MEAN bb bbb

SUBTRACT aaa bbb c
Find the difference

SCORE c z

END

COUNT z >=3 k
How often did the difference exceed the cutoff point for our significance
test of 3 pounds?

DIVIDE k 1000 kk

PRINT kk

If kk is close to zero, we know that the sample size is large
enough that samples drawn from the universes we have hy-
pothesized will not mislead us into thinking that they could
come from the same universe.

Step-wise sample-size determination
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Often it is wisest to determine the sample size as you go along, rather than fix-
ing it firmly in advance. In sequential sampling, you continue sampling until
the split is sufficiently even to make you believe you have a reliable answer.

Related techniques work in a series of jumps from sample size
to sample size. Step-wise sampling makes it less likely that
you will take a sample that is much larger than necessary. For
example, in the cable-television case, if you took a sample of
perhaps fifty you could see whether the split was as wide as
32-18, which you figure you need for 9 to 1 odds that your
answer is right. If the split were not that wide, you would
sample another fifty, another 100, or however large a sample
you needed until you reached a split wide enough to satisfy
you that your answer was reliable and that you really knew
which way the entire universe would vote.

Step-wise sampling is not always practical, however, and the
cable-television telephone-survey example is unusually favor-
able for its use. One major pitfall is that the early responses to
a mail survey, for example, do not provide a random sample
of the whole, and therefore it is a mistake simply to look at
the early returns when the split is not wide enough to justify
a verdict. If you have listened to early radio or television re-
ports of election returns, you know how misleading the re-
ports from the first precincts can be if we regard them as a fair
sample of the whole.2

Stratified sampling is another device that helps reduce the
sample size required, by balancing the amounts of informa-
tion you obtain in the various strata. (Cluster sampling does
not reduce the sample size. Rather, it aims to reduce the cost
of obtaining a sample that will produce a given level of accu-
racy.)

Summary

Sample sizes are too often determined on the basis of conven-
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tion or of the available budget. A more rational method of choosing the size of
the sample is by balancing the diminution of error expected with a larger sample,
and its value, against the cost of increasing the sample size. The relationship of

various sample sizes to various degrees of accuracy can be es-
timated with resampling methods, which are illustrated here.

Endnotes

1. R. Schlaifer (1961) attacks the sample-size problem in the
wider context of decision making, costs, and benefits. The sta-tistically knowledgeable reader can find an excellent discussion of sample size

in M. Hansen, et al. A. Mace gives many examples of the appropriate calcula-
tion in an engineering framework.

2. See J. Lorie and H. Roberts (pp. 155-157) for more discus-
sion of the limitations of sequential sampling. And M. Hansen,
et al., warn against the danger of increasing the sample size in
this fashion:

The investigator examines the returns from an initial sample
to determine whether they appear acceptable to the investiga-
tor; if they do, he uses the results as they are; if they do not, he
discards the sample results [or keeps the old sample] and
draws a new sample, perhaps by a different method, in the
hope that he will obtain a result more nearly like the one he
expected. Such an approach can be utilized to obtain almost
any results desired, or can “prove” any point even when un-
biased or consistent methods of selecting the sample and mak-
ing the individual estimates are used if the initial results are
subject to relatively large sampling errors. (Hansen, et al., 1953:
78)


